Development and evaluation of oligonucleotide chip based on the 16S-23S rRNA gene spacer region for detection of pathogenic microorganisms associated with sepsis.

نویسندگان

  • Cheol Min Kim
  • Eun Sil Song
  • Hyun Jung Jang
  • Hyun-Ju Kim
  • Sangyeop Lee
  • Jeong Hwan Shin
  • Sun Joo Kim
  • Seok Hoon Jeong
  • Joseph Jeong
  • Kwangnak Koh
  • Go Eun Choi
  • Eun Yup Lee
  • Chulhun L Chang
چکیده

Oligonucleotide chips targeting the bacterial internal transcribed spacer region (ITS) of the 16S-23S rRNA gene, which contains genus- and species-specific regions, were developed and evaluated. Forty-three sequences were designed consisting of 1 universal, 3 Gram stain-specific, 9 genus-specific, and 30 species-specific probes. The specificity of the probes was confirmed using bacterial type strains including 54 of 52 species belonging to 18 genera. The performance of the probes was evaluated using 825 consecutive samples that were positive by blood culture in broth medium. Among the 825 clinical specimens, 708 (85.8%) were identified correctly by the oligonucleotide chip. Most (536 isolates, or 75.7%) were identified as staphylococci, Escherichia coli, or Klebsiella pneumoniae. Thirty-seven isolates (4.5%) did not bind to the corresponding specific probes. Most of these also were staphylococci, E. coli, or K. pneumoniae and accounted for 6.3% of total number of the species. Sixty-two specimens (7.5%) did not bind the genus- or species-specific probes because of lack of corresponding specific probes. Among them, Acinetobacter baumannii was the single most frequent isolate (26/62). The oligonucleotide chip was highly specific and sensitive in detecting the causative agents of bacteremia directly from positive blood cultures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Identification of Rare Clinical Mycobacteria by Application of 16S-23S Spacer Region Sequencing

Objective(s) In addition to several molecular methods and in particular 16S rDNA analysis, the application of a more discriminatory genetic marker, i.e., 16S-23S internal transcribed spacer gene sequence has had a great impact on identification and classification of mycobacteria. In the current study we aimed to apply this sequencing power to conclusive identification of some Iranian clinical ...

متن کامل

Genetic variations of avian Pasteurella multocida as demonstrated by 16S-23S rRNA gene sequences comparison

Pasteurella multocida is known as an important heterogenic bacterial agent causes some severe diseases such as fowl cholera in poultry and haemorrhagic septicaemia in cattle and buffalo. A polymerase chain reaction (PCR) assay was developed using primers derived from conserved part of 16S-23S rRNA gene. The PCR amplified a fragment size of 0.7 kb using DNA from nine avian P. multocida  isolates...

متن کامل

Identification of pathogenic Nocardia species by reverse line blot hybridization targeting the 16S rRNA and 16S-23S rRNA gene spacer regions.

Although 16S rRNA gene sequence analysis is employed most often for the definitive identification of Nocardia species, alternate molecular methods and polymorphisms in other gene targets have also enabled species determinations. We evaluated a combined Nocardia PCR-based reverse line blot (RLB) hybridization assay based on 16S and 16S-23S rRNA gene spacer region polymorphisms to identify 12 Ame...

متن کامل

Evaluation of PCR methods for rapid identification and differentiation of Streptococcus uberis and Streptococcus parauberis.

Streptococcus uberis and Streptococcus parauberis reference strains and isolates obtained from routine diagnostics were investigated by PCR with oligonucleotide primers designed according to species-specific parts of the 16S rRNA gene, the 23S rRNA gene, and the 16S-23S rRNA intergenic spacer region of both species. All three primer pairs allowed an identification of 67 isolates as S. uberis an...

متن کامل

Development of PCR assays for detection of Streptococcus canis.

Streptococcus canis isolates, also including S. canis of artificially contaminated milk, could be identified by polymerase chain reaction (PCR) amplification using oligonucleotide primers designed according to species-specific parts of the 16S rRNA gene and, after sequencing, according to S. canis-specific parts of the 16S-23S rDNA intergenic spacer region and with oligonucleotide primers detec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of clinical microbiology

دوره 48 5  شماره 

صفحات  -

تاریخ انتشار 2010